All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fast Spectral Ranking for Similarity Search

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00327174" target="_blank" >RIV/68407700:21230/18:00327174 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/8578894" target="_blank" >https://ieeexplore.ieee.org/document/8578894</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR.2018.00796" target="_blank" >10.1109/CVPR.2018.00796</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fast Spectral Ranking for Similarity Search

  • Original language description

    Despite the success of deep learning on representing images for particular object retrieval, recent studies show that the learned representations still lie on manifolds in a high dimensional space. This makes the Euclidean nearest neighbor search biased for this task. Exploring the manifolds online remains expensive even if a nearest neighbor graph has been computed offline. This work introduces an explicit embedding reducing manifold search to Euclidean search followed by dot product similarity search. This is equivalent to linear graph filtering of a sparse signal in the frequency domain. To speed up online search, we compute an approximate Fourier basis of the graph offline. We improve the state of art on particular object retrieval datasets including the challenging Instre dataset containing small objects. At a scale of 105 images, the offl

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LL1303" target="_blank" >LL1303: Large Scale Category Retrieval</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2018: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-5386-6420-9

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    10

  • Pages from-to

    7632-7641

  • Publisher name

    IEEE

  • Place of publication

    Piscataway, NJ

  • Event location

    Salt Lake City

  • Event date

    Jun 19, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000457843607081