All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Autonomous compact monitoring of large areas using micro aerial vehicles with limited sensory information and computational resources

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00326772" target="_blank" >RIV/68407700:21230/19:00326772 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-14984-0_14" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-14984-0_14</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-14984-0_14" target="_blank" >10.1007/978-3-030-14984-0_14</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Autonomous compact monitoring of large areas using micro aerial vehicles with limited sensory information and computational resources

  • Original language description

    In this paper, a new approach for autonomous real-time monitoring of large areas using small unmanned areal vehicles with limited sensory and computational resources is proposed. Most of the existing solutions of area monitoring require large aerial vehicles to be equipped with a list of expensive sensors and powerful computational resources. Recent progress in Micro Aerial Vehicles (MAVs) allows us to consider their utilization in new tasks, such as the considered compact monitoring, which are dedicated to large well-equipped aerial vehicles so-far only. The proposed solution enables online area monitoring using MAVs equipped with minimal sensory and computational resources and to process the obtained data only with cell phones capabilities, which considerably extends application possibilities of the drone technology. The proposed methodology was verified under various outdoor conditions of real application scenarios with a simple autonomous MAV controlled by the onboard model predictive control in a robotic operation system (ROS), while the user interface was provided on a standard smartphone with Android OS.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Modelling and Simulation for Autonomous Systems (MESAS 2018)

  • ISBN

    978-3-030-14983-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    158-171

  • Publisher name

    Springer International Publishing AG

  • Place of publication

    Cham

  • Event location

    Praha

  • Event date

    Oct 17, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article