All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Gaussian Process Based Model-free Control with Q-Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335629" target="_blank" >RIV/68407700:21230/19:00335629 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.ifacol.2019.09.147" target="_blank" >https://doi.org/10.1016/j.ifacol.2019.09.147</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ifacol.2019.09.147" target="_blank" >10.1016/j.ifacol.2019.09.147</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Gaussian Process Based Model-free Control with Q-Learning

  • Original language description

    The aim of this paper is to demonstrate a new algorithm for Machine Learning (ML) based on Gaussian Process Regression (GPR) and how it can be used as a practical control design technique. An optimized control law for a nonlinear process is found directly by training the algorithm on noisy data collected from the process when controlled by a suboptimal controller. A simplified nonlinear Fan Coil Unit (FCU) model is used as an example for which the fan speed control is designed using the off-policy Q -learning algorithm. Additionally, the algorithm properties are discussed, i.e. learning process robustness, Gaussian Process (GP) kernel functions choice. The simulation results are compared to a simple PI design based on a linearized model. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA18-26278S" target="_blank" >GA18-26278S: Incorporation of Prior Knowledge for Identification of Nonlinear Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IFAC PAPERSONLINE

  • ISBN

  • ISSN

    2405-8963

  • e-ISSN

    2405-8963

  • Number of pages

    8

  • Pages from-to

    236-243

  • Publisher name

    IFAC

  • Place of publication

    Laxenburg

  • Event location

    Belfast

  • Event date

    Aug 21, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000493064700041