Autonomous Car Chasing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00345492" target="_blank" >RIV/68407700:21230/20:00345492 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/20:00345492
Result on the web
<a href="https://doi.org/10.1007/978-3-030-66823-5_20" target="_blank" >https://doi.org/10.1007/978-3-030-66823-5_20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-66823-5_20" target="_blank" >10.1007/978-3-030-66823-5_20</a>
Alternative languages
Result language
angličtina
Original language name
Autonomous Car Chasing
Original language description
We developed an autonomous driving system that can chase another vehicle using only images from a single RGB camera. At the core of the system is a novel dual-task convolutional neural network simultaneously performing object detection as well as coarse semantic segmentation. The system was firstly tested in CARLA simulations. We created a new challenging publicly available CARLA Car Chasing Dataset collected by manually driving the chased car. Using the dataset, we showed that the system that uses the semantic segmentation was able to chase the pursued car on average 16% longer than other versions of the system. Finally, we integrated the system into a sub-scale vehicle platform built on a high-speed RC car and demonstrated its capabilities by autonomously chasing another RC car.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computer Vision – ECCV 2020 Workshops, Part IV
ISBN
978-3-030-66822-8
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
16
Pages from-to
337-352
Publisher name
Springer
Place of publication
Cham
Event location
Glasgow
Event date
Aug 23, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—