Influence of Added Phosphorus and Gallium in Lead-free Bismuth-Tin Alloys on Wetting and Intermetallic Compounds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350916" target="_blank" >RIV/68407700:21230/21:00350916 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/ISSE51996.2021.9467660" target="_blank" >https://doi.org/10.1109/ISSE51996.2021.9467660</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISSE51996.2021.9467660" target="_blank" >10.1109/ISSE51996.2021.9467660</a>
Alternative languages
Result language
angličtina
Original language name
Influence of Added Phosphorus and Gallium in Lead-free Bismuth-Tin Alloys on Wetting and Intermetallic Compounds
Original language description
The aim of this work is to evaluate a wettability improvement and microstructure changes by addition of gallium and trace elements of phosphorus to novel low-temperature lead-free Bi-Sn solder alloys. Four different alloys Bi59Sn40Ga1, Bi57Sn40Ga3, Bi60Sn40 and the eutectic alloy Bi58Sn42 were chosen. Furthermore, all these solders were investigated with an added small amount of phosphorus as well. For the wettability comparison, the wetting balance test in combination with three different fluxes was used. Moreover, these alloys were soldered to a copper plated test board and aged in a climatic chamber at the temperature of 80 °C for 24 days. Subsequently, metallographic cross-sections were made and analyzed by scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX). The results of the wettability analysis showed the dominance of the chosen flux while soldering. However, it is still possible to draw the conclusion that phosphorus as an additive in Bi-Sn-Ga alloys supports the wetting, which is a crucial property of the solders. On the other hand, by the addition of gallium to the Bi60Sn40, the wetting force decreased. Regarding the microstructure, two different intermetallic compounds were identified. Namely, Cu6Sn5 at the interface between Cu board and alloys Bi60Sn40P and the eutectic one Bi58Sn42. The second detected IMC was CuGa2 between Cu and solder alloys with one and three weight percent of added gallium.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2021 44th International Spring Seminar on Electronics Technology (ISSE)
ISBN
978-1-6654-1477-7
ISSN
—
e-ISSN
2161-2528
Number of pages
6
Pages from-to
1-6
Publisher name
IEEE Press
Place of publication
New York
Event location
Bautzen
Event date
May 5, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—