All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tessellation-based Kernel Density Estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354356" target="_blank" >RIV/68407700:21230/21:00354356 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/21:00354356

  • Result on the web

    <a href="https://doi.org/10.1145/3508546.3508582" target="_blank" >https://doi.org/10.1145/3508546.3508582</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3508546.3508582" target="_blank" >10.1145/3508546.3508582</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tessellation-based Kernel Density Estimation

  • Original language description

    Kernel density estimation is a complex task that plays an essential role in a variety of applications. In this paper, we introduce an approach to the task that converts the problem of bandwidth evaluation in the Parzen-window-like framework into the non-parametric evaluation of a fine-grained density estimate which can then be scaled by means of the Scale-Space theory to achieve the desired level of smoothness. The detailed estimate is realized through the Delaunay space tessellation method and properties of its output simplices. Additionally, in the experimental part of the paper, we showcase the new method and demonstrate its outputs at various scales, reaching results that perceivably outperform its counterparts.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ACAI 2021: Proceedings of the 2021 International Conference on Algorithms, Computing and Artificial Intelligence

  • ISBN

    978-1-4503-8505-3

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    Association for Computing Machinery

  • Place of publication

    New York

  • Event location

    Sanya

  • Event date

    Dec 22, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article