ChunkyGAN: Real Image Inversion via Segments
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00360787" target="_blank" >RIV/68407700:21230/22:00360787 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-20050-2_12" target="_blank" >https://doi.org/10.1007/978-3-031-20050-2_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-20050-2_12" target="_blank" >10.1007/978-3-031-20050-2_12</a>
Alternative languages
Result language
angličtina
Original language name
ChunkyGAN: Real Image Inversion via Segments
Original language description
We present ChunkyGAN—a novel paradigm for modeling and editing images using generative adversarial networks. Unlike previous techniques seeking a global latent representation of the input image, our approach subdivides the input image into a set of smaller components (chunks) specified either manually or automatically using a pre-trained segmentation network. For each chunk, the latent code of a generative network is estimated locally with greater accuracy thanks to a smaller number of constraints. Moreover, during the optimization of latent codes, segmentation can further be refined to improve matching quality. This process enables high-quality projection of the original image with spatial disentanglement that previous methods would find challenging to achieve. To demonstrate the advantage of our approach, we evaluated it quantitatively and also qualitatively in various image editing scenarios that benefit from the higher reconstruction quality and local nature of the approach. Our method is flexible enough to manipulate even out-of-domain images that would be hard to reconstruct using global techniques.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computer Vision – ECCV 2022, Part XXIII
ISBN
978-3-031-20049-6
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
16
Pages from-to
189-204
Publisher name
Springer
Place of publication
Cham
Event location
Tel Aviv
Event date
Oct 23, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000904146300012