All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ChunkyGAN: Real Image Inversion via Segments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00360787" target="_blank" >RIV/68407700:21230/22:00360787 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-20050-2_12" target="_blank" >https://doi.org/10.1007/978-3-031-20050-2_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-20050-2_12" target="_blank" >10.1007/978-3-031-20050-2_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ChunkyGAN: Real Image Inversion via Segments

  • Original language description

    We present ChunkyGAN—a novel paradigm for modeling and editing images using generative adversarial networks. Unlike previous techniques seeking a global latent representation of the input image, our approach subdivides the input image into a set of smaller components (chunks) specified either manually or automatically using a pre-trained segmentation network. For each chunk, the latent code of a generative network is estimated locally with greater accuracy thanks to a smaller number of constraints. Moreover, during the optimization of latent codes, segmentation can further be refined to improve matching quality. This process enables high-quality projection of the original image with spatial disentanglement that previous methods would find challenging to achieve. To demonstrate the advantage of our approach, we evaluated it quantitatively and also qualitatively in various image editing scenarios that benefit from the higher reconstruction quality and local nature of the approach. Our method is flexible enough to manipulate even out-of-domain images that would be hard to reconstruct using global techniques.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Vision – ECCV 2022, Part XXIII

  • ISBN

    978-3-031-20049-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    16

  • Pages from-to

    189-204

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Tel Aviv

  • Event date

    Oct 23, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000904146300012