On locally finite orthomodular lattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367663" target="_blank" >RIV/68407700:21230/23:00367663 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1515/ms-2023-0040" target="_blank" >https://doi.org/10.1515/ms-2023-0040</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/ms-2023-0040" target="_blank" >10.1515/ms-2023-0040</a>
Alternative languages
Result language
angličtina
Original language name
On locally finite orthomodular lattices
Original language description
Let us denote by LF the class of all orthomodular lattices (OMLs) that are locally finite (i.e., L element LF provided each finite subset of L generates in L a finite subOML). In this note, we first show how one can obtain new locally finite OMLs from the initial ones and enlarge thus the class LF. We find LF considerably large though, obviously, not all OMLs belong to LF. Then we study states on the OMLs of LF. We show that local finiteness may to a certain extent make up for distributivity. For instance, we show that if L element LF and if for any finite subOML K there is a state s: K -> [0,1] on K, then there is a state on the entire L. We also consider further algebraic and state properties of LF relevant to the quantum logic theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Slovaca
ISSN
0139-9918
e-ISSN
1337-2211
Volume of the periodical
73
Issue of the periodical within the volume
2
Country of publishing house
SK - SLOVAKIA
Number of pages
5
Pages from-to
545-549
UT code for WoS article
000959325900001
EID of the result in the Scopus database
2-s2.0-85151349116