All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Real3D-Aug: Point Cloud Augmentation by Placing Real Objects with Occlusion Handling for 3D Detection and Segmentation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00370701" target="_blank" >RIV/68407700:21230/23:00370701 - isvavai.cz</a>

  • Result on the web

    <a href="https://ceur-ws.org/Vol-3349/paper8.pdf" target="_blank" >https://ceur-ws.org/Vol-3349/paper8.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Real3D-Aug: Point Cloud Augmentation by Placing Real Objects with Occlusion Handling for 3D Detection and Segmentation

  • Original language description

    Object detection and semantic segmentation with the 3D LiDAR point cloud data require expensive annotation. We propose a data augmentation method that takes advantage of already annotated data multiple times. We propose an augmentation framework that reuses real data, automatically finds suitable placements in the scene to be augmented, and handles occlusions explicitly. Due to the usage of the real data, the scan points of newly inserted objects in augmentation sustain the physical characteristics of the LiDAR, such as intensity and raydrop. The pipeline proves competitive in training top-performing models for 3D object detection and semantic segmentation. The new augmentation provides a significant performance gain in rare and essential classes, notably 6.65% average precision gain for “Hard” pedestrian class in KITTI object detection or 2.14 mean IoU gain in the SemanticKITTI segmentation challenge over the state of the art.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Vision Winter Workshop 2023

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

    1613-0073

  • Number of pages

    10

  • Pages from-to

  • Publisher name

    CEUR-WS.org

  • Place of publication

  • Event location

    Krems a.d. Donau

  • Event date

    Feb 15, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article