All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Visible-frequency plasmonic enhancement at the edge of graphene/h-BN heterostructures on silicon substrate

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00374539" target="_blank" >RIV/68407700:21230/24:00374539 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.carbon.2024.118836" target="_blank" >https://doi.org/10.1016/j.carbon.2024.118836</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.carbon.2024.118836" target="_blank" >10.1016/j.carbon.2024.118836</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Visible-frequency plasmonic enhancement at the edge of graphene/h-BN heterostructures on silicon substrate

  • Original language description

    Heterostructures of graphene and hexagonal boron nitride (G/h-BN) have been widely studied for controlling and utilizing graphene electronic properties. Here we characterize specific optical and electronic properties of G/h-BN heterostructures made of a high-quality single layer chemical vapor deposition (CVD) graphene laid over h-BN flakes, with focus on plasmonic effects. We compare the G/h-BN properties on Si and SiO2 substrates by micro-Raman spectroscopy mapping, Kelvin probe force microscopy, optical and atomic force microscopy. We observe highly enhanced Raman intensity (up to 280 %) from Si as well as graphene along the G/h-BN edge. It is attributed to localized concentration of electrons in graphene and suitable perpendicular orientation of plasmonic vibrations at the edge. The plasmonic Raman enhancement occurs under a visible light excitation (532 nm) and the effect can be tuned by the h-BN flake thickness (10–150 nm). The enhancement is specific to G/h-BN/Si structures, on G/h-BN/SiO2 structures the Raman signal is suppressed while I2D/IG ratio is increased. Vice versa, change of surface potential under visible light illumination (photovoltage) is on G/h-BN/Si negligible (within 10 mV) compared to the G/h-BN/SiO2 structures. These results open new prospects for broad utilization of localized visible plasmonic effects in graphene.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000464" target="_blank" >EF15_003/0000464: Centre of Advanced Photovoltaics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Carbon

  • ISSN

    0008-6223

  • e-ISSN

    1873-3891

  • Volume of the periodical

    219

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    001169104300001

  • EID of the result in the Scopus database

    2-s2.0-85184996598