3D Printed Circuit Boards from Recycled Plastics: Interconnection Properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377341" target="_blank" >RIV/68407700:21230/24:00377341 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/ISSE61612.2024.10603755" target="_blank" >https://doi.org/10.1109/ISSE61612.2024.10603755</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISSE61612.2024.10603755" target="_blank" >10.1109/ISSE61612.2024.10603755</a>
Alternative languages
Result language
angličtina
Original language name
3D Printed Circuit Boards from Recycled Plastics: Interconnection Properties
Original language description
The aim of this work is to advance the development of an alternative eco-friendly method of manufacturing printed circuit boards (PCBs) using recycled and recyclable 3D printable polymers as the insulating substrate and a special silver paste for the conductive pattern. The components are embedded in the insulating substrate, and the connection to the PCB is made by overprinting the component with the silver paste. To improve mechanical properties and durability, in this work, the conductive pattern was overprinted on the 3D printer with another layer of recycled polymer, completely encapsulating the component. The results showed that the overprinting post-process led to a significant improvement in the mechanical properties of the interconnects with no negative impacts on the contact resistance of the components. The measurements of contact resistance indicated similarity to ECA joints. According to the pull-off test performed on the assembled two-terminal components, the pull-off force required to detach the component was similar to that of the soldered joints. Although the encapsulation did not apparently affect the change of the mechanical and electrical properties after accelerated aging tests, it showed an increase in reliability for rPLA samples. In this case, the encapsulation eliminated cracks in the conductive pattern. Despite the extensive development that still lies ahead, this alternative, environmentally friendly method could then be used in low-cost electronics or prototyping applications where sustainability is a priority.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2024 47th International Spring Seminar on Electronics Technology (ISSE)
ISBN
979-8-3503-8548-9
ISSN
2161-2536
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
IEEE Press
Place of publication
New York
Event location
Praha
Event date
May 15, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001283808200032