All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Drones Guiding Drones: Cooperative Navigation of a Less-Equipped Micro Aerial Vehicle in Cluttered Environments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00379083" target="_blank" >RIV/68407700:21230/24:00379083 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/IROS58592.2024.10802770" target="_blank" >https://doi.org/10.1109/IROS58592.2024.10802770</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IROS58592.2024.10802770" target="_blank" >10.1109/IROS58592.2024.10802770</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Drones Guiding Drones: Cooperative Navigation of a Less-Equipped Micro Aerial Vehicle in Cluttered Environments

  • Original language description

    Reliable deployment of Unmanned Aerial Vehicles (UAVs) in cluttered unknown environments requires accurate sensors for Global Navigation Satellite System (GNSS)-denied localization and obstacle avoidance. Such a requirement limits the usage of cheap and micro-scale vehicles with constrained payload capacity if industrial-grade reliability and precision are required. This paper investigates the possibility of offloading the necessity to carry heavy sensors to another member of the UAV team while preserving the desired capability of the smaller robot intended for exploring narrow passages. A novel cooperative guidance framework offloading the sensing requirements from a minimalistic secondary UAV to a superior primary UAV is proposed. The primary UAV constructs a dense occupancy map of the environment and plans collision-free paths for both UAVs to ensure reaching the desired secondary UAV’s goals even in areas not accessible by the bigger robot. The primary UAV guides the secondary UAV to follow the planned path while tracking the UAV using Light Detection and Ranging (LiDAR)-based relative localization. The proposed approach was verified in real-world experiments with a heterogeneous team of a 3D LiDAR-equipped primary UAV and a micro-scale camera-equipped secondary UAV moving autonomously through unknown cluttered GNSS-denied environments with the proposed framework running fully on board the UAVs.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)

  • ISBN

    979-8-3503-7770-5

  • ISSN

    2153-0858

  • e-ISSN

    2153-0866

  • Number of pages

    8

  • Pages from-to

    10597-10604

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Abu Dhabi

  • Event date

    Oct 14, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001433985300389