On Stability of Metric Spaces and Kalton's Property Q
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00382590" target="_blank" >RIV/68407700:21230/24:00382590 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1093/qmath/haae050" target="_blank" >https://doi.org/10.1093/qmath/haae050</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/qmath/haae050" target="_blank" >10.1093/qmath/haae050</a>
Alternative languages
Result language
angličtina
Original language name
On Stability of Metric Spaces and Kalton's Property Q
Original language description
The first named author introduced the notion of upper stability for metric spaces in F. Baudier, Barycentric gluing and geometry of stable metrics, Rev. R. Acad. Cienc. Exactas F & iacute;s. Nat. Ser. A Mat. RACSAM 116 no. 1, (2022), 48 as a relaxation of stability. The motivation was a search for a new invariant to distinguish the class of reflexive Banach spaces from stable metric spaces in the coarse and uniform category. In this paper we show that property Q does in fact imply upper stability. We also provide a direct proof of the fact that reflexive spaces are upper stable by relating the latter notion to the asymptotic structure of Banach spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quarterly Journal of Mathematics
ISSN
0033-5606
e-ISSN
1464-3847
Volume of the periodical
75
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
1375-1391
UT code for WoS article
001373232100001
EID of the result in the Scopus database
2-s2.0-85213849260