All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Stability of Metric Spaces and Kalton's Property Q

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00382590" target="_blank" >RIV/68407700:21230/24:00382590 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1093/qmath/haae050" target="_blank" >https://doi.org/10.1093/qmath/haae050</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/qmath/haae050" target="_blank" >10.1093/qmath/haae050</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Stability of Metric Spaces and Kalton's Property Q

  • Original language description

    The first named author introduced the notion of upper stability for metric spaces in F. Baudier, Barycentric gluing and geometry of stable metrics, Rev. R. Acad. Cienc. Exactas F & iacute;s. Nat. Ser. A Mat. RACSAM 116 no. 1, (2022), 48 as a relaxation of stability. The motivation was a search for a new invariant to distinguish the class of reflexive Banach spaces from stable metric spaces in the coarse and uniform category. In this paper we show that property Q does in fact imply upper stability. We also provide a direct proof of the fact that reflexive spaces are upper stable by relating the latter notion to the asymptotic structure of Banach spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Quarterly Journal of Mathematics

  • ISSN

    0033-5606

  • e-ISSN

    1464-3847

  • Volume of the periodical

    75

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    1375-1391

  • UT code for WoS article

    001373232100001

  • EID of the result in the Scopus database

    2-s2.0-85213849260