Rational base number systems for p-adic numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F12%3A00184116" target="_blank" >RIV/68407700:21240/12:00184116 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1051/ita/2011114" target="_blank" >http://dx.doi.org/10.1051/ita/2011114</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/ita/2011114" target="_blank" >10.1051/ita/2011114</a>
Alternative languages
Result language
angličtina
Original language name
Rational base number systems for p-adic numbers
Original language description
This paper deals with rational base number systems for p-adic numbers. We mainly focus on the system proposed by Akiyama et al. in 2008, but we also show that this system is in some sense isomorphic to some other rational base number systems by means offinite transducers. We identify the numbers with finite and eventually periodic representations and we also determine the number of representations of a given p-adic number.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
RAIRO - Theoretical Informatics and Applications
ISSN
0988-3754
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
01
Country of publishing house
FR - FRANCE
Number of pages
20
Pages from-to
87-106
UT code for WoS article
000301345900008
EID of the result in the Scopus database
—