On the Zero Defect Conjecture
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F17%3A00306340" target="_blank" >RIV/68407700:21240/17:00306340 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/17:00306340
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2016.12.006" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2016.12.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2016.12.006" target="_blank" >10.1016/j.ejc.2016.12.006</a>
Alternative languages
Result language
angličtina
Original language name
On the Zero Defect Conjecture
Original language description
Brlek et al., conjectured in 2008 that any fixed point of a primitive morphism with finite palindromic defect is either periodic or its palindromic defect is zero. Bucci and Vaslet disproved this conjecture in 2012 by a counterexample over ternary alphabet. We prove that the conjecture is valid on binary alphabet. We also describe a class of morphisms over multiliteral alphabet for which the conjecture still holds. The proof is based on properties of extension graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-03538S" target="_blank" >GA13-03538S: Algorithms, Dynamics and Geometry of Numeration systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
1095-9971
Volume of the periodical
62
Issue of the periodical within the volume
May
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
132-146
UT code for WoS article
000398648700011
EID of the result in the Scopus database
2-s2.0-85008319031