Palindromic sequences generated from marked morphisms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00238788" target="_blank" >RIV/68407700:21340/16:00238788 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2015.05.006" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2015.05.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2015.05.006" target="_blank" >10.1016/j.ejc.2015.05.006</a>
Alternative languages
Result language
angličtina
Original language name
Palindromic sequences generated from marked morphisms
Original language description
Fixed points u = phi(u) of marked and primitive morphisms phi over arbitrary alphabet are considered. We show that if u is palindromic, i.e., its language contains infinitely many palindromes, then some power of phi has a conjugate in class P. This class was introduced by Hof et al. (1995) in order to study palindromic morphic words. Our definitions of marked and well-marked morphisms are more general than the ones previously used by Frid (1999) or Tan (2007). As any morphism with an aperiodic fixed point over a binary alphabet is marked, our result generalizes the result of Tan. Labbe (2014) demonstrated that already over a ternary alphabet the property of morphisms to be marked is important for the validity of our theorem. The main tool used in our proof is the description of bispecial factors in fixed points of morphisms provided by Klouda (2012). (C) 2015 Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-03538S" target="_blank" >GA13-03538S: Algorithms, Dynamics and Geometry of Numeration systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
January
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
200-214
UT code for WoS article
000362144400013
EID of the result in the Scopus database
2-s2.0-84934882110