All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep Variational Autoencoder with Shallow Parallel Path for Top-N Recommendation (VASP)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00351311" target="_blank" >RIV/68407700:21240/21:00351311 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-86383-8_11" target="_blank" >https://doi.org/10.1007/978-3-030-86383-8_11</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-86383-8_11" target="_blank" >10.1007/978-3-030-86383-8_11</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep Variational Autoencoder with Shallow Parallel Path for Top-N Recommendation (VASP)

  • Original language description

    The recently introduced Embarrasingelly Shallow Autoencoder (EASE) algorithm presents a simple and elegant way to solve the top-N recommendation task. In this paper, we introduce Neural EASE to further improve the performance of this algorithm by incorporating techniques for training modern neural networks. Also, there is a growing interest in the recsys community to utilize variational autoencoders (VAE) for this task. We introduce Focal Loss Variational AutoEncoder (FLVAE), benefiting from multiple non-linear layers without an information bottleneck while not overfitting towards the identity. We show how to learn FLVAE in parallel with Neural EASE and achieve state-of-the-art performance on the MovieLens 20M dataset and competitive results on the Netflix Prize dataset.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-18080S" target="_blank" >GA18-18080S: Fusion-Based Knowledge Discovery in Human Activity Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2021

  • ISBN

    978-3-030-86383-8

  • ISSN

  • e-ISSN

    1611-3349

  • Number of pages

    12

  • Pages from-to

    138-149

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Bratislava

  • Event date

    Sep 14, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000711936300011