Integrable systems in magnetic fields: the generalized parabolic cylindrical case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00375869" target="_blank" >RIV/68407700:21240/24:00375869 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/24:00375869
Result on the web
<a href="https://doi.org/10.1088/1751-8121/ad4936" target="_blank" >https://doi.org/10.1088/1751-8121/ad4936</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/ad4936" target="_blank" >10.1088/1751-8121/ad4936</a>
Alternative languages
Result language
angličtina
Original language name
Integrable systems in magnetic fields: the generalized parabolic cylindrical case
Original language description
This article is a contribution to the classification of quadratically integrable systems with vector potentials whose integrals are of the nonstandard, nonseparable type. We focus on generalized parabolic cylindrical case, related to non-subgroup-type coordinates. We find three new systems, two with magnetic fields polynomial in Cartesian coordinates and one with unbounded exponential terms. The limit in the parameters of the integrals yields a new parabolic cylindrical system; the limit of vanishing magnetic fields leads to the free motion. This confirms the conjecture that non-subgroup type integrals can be related to separable systems only in a trivial manner.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Volume of the periodical
57
Issue of the periodical within the volume
23
Country of publishing house
GB - UNITED KINGDOM
Number of pages
21
Pages from-to
1-21
UT code for WoS article
001230498500001
EID of the result in the Scopus database
2-s2.0-85194376856