On superintegrability of 3D axially-symmetric non-subgroup-type systems with magnetic fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00345865" target="_blank" >RIV/68407700:21340/21:00345865 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1088/1751-8121/abc4b8" target="_blank" >https://doi.org/10.1088/1751-8121/abc4b8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/abc4b8" target="_blank" >10.1088/1751-8121/abc4b8</a>
Alternative languages
Result language
angličtina
Original language name
On superintegrability of 3D axially-symmetric non-subgroup-type systems with magnetic fields
Original language description
We extend the investigation of three-dimensional Hamiltonian systems of non-subgroup type admitting non-zero magnetic fields and an axial symmetry, namely the circular parabolic case, the oblate spheroidal case and the prolate spheroidal case. More precisely, we focus on linear and some special cases of quadratic superintegrability. In the linear case, no new superintegrable system arises. In the quadratic case, we found one new minimally superintegrable system that lies at the intersection of the circular parabolic and cylindrical cases and another one at the intersection of the cylindrical, spherical, oblate spheroidal and prolate spheroidal cases. By imposing additional conditions on these systems, we found for each quadratically minimally superintegrable system a new infinite family of higher-order maximally superintegrable systems. These two systems are linked respectively with the caged and harmonic oscillators without magnetic fields through a time-dependent canonical transformation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-11805S" target="_blank" >GA17-11805S: Superintegrable systems in magnetic fields in three spatial dimensions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Volume of the periodical
54
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
27
Pages from-to
—
UT code for WoS article
000596724200001
EID of the result in the Scopus database
2-s2.0-85097949093