Full Revivals in 2D Quantum Walks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F10%3A00172096" target="_blank" >RIV/68407700:21340/10:00172096 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Full Revivals in 2D Quantum Walks
Original language description
Recurrence of a random walk is described by the Pólya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physica Scripta
ISSN
0031-8949
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
T140
Country of publishing house
SE - SWEDEN
Number of pages
4
Pages from-to
—
UT code for WoS article
000284693600037
EID of the result in the Scopus database
—