Greedy and lazy representations in negative base systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F13%3A00199836" target="_blank" >RIV/68407700:21340/13:00199836 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Greedy and lazy representations in negative base systems
Original language description
We consider positional numeration systems with negative real base -beta, where beta > 1, and study the extremal representations in these systems, called here the greedy and lazy representations. We give algorithms for determination of minimal and maximal(-beta)- representation with respect to the alternate order. We also show that both extremal representations can be obtained using the positive base beta^2 and a non-integer alphabet. This enables us to characterize digit sequences admissible as greedyand lazy (-beta)-representation. Such a characterization allows us to study the set of uniquely representable numbers. In case that is the golden ratio and the Tribonacci constant, we give the characterization of digit sequences admissible as greedy andlazy (-beta)-representation using a set of forbidden strings.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Kybernetika
ISSN
0023-5954
e-ISSN
—
Volume of the periodical
49
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
22
Pages from-to
258-279
UT code for WoS article
000329259300005
EID of the result in the Scopus database
—