Tunneling resonances in systems without a classical trapping
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F13%3A00214012" target="_blank" >RIV/68407700:21340/13:00214012 - isvavai.cz</a>
Alternative codes found
RIV/61389005:_____/13:00391481
Result on the web
<a href="http://scitation.aip.org/content/aip/journal/jmp/54/1/10.1063/1.4773098" target="_blank" >http://scitation.aip.org/content/aip/journal/jmp/54/1/10.1063/1.4773098</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4773098" target="_blank" >10.1063/1.4773098</a>
Alternative languages
Result language
angličtina
Original language name
Tunneling resonances in systems without a classical trapping
Original language description
In this paper, we analyze a free quantum particle in a straight Dirichlet waveguide which has at its axis two Dirichlet barriers of lengths l_(+-) separated by a window of length 2a. It is known that if the barriers are semi-infinite, i.e., we have two adjacent waveguides coupled laterally through the boundary window, the system has for any a > 0 a finite number of eigenvalues below the essential spectrum threshold. Here, we demonstrate that for large but finite l_(+-) the system has resonances which converge to the said eigenvalues as l_(+-) -> infinity, and derive the leading term in the corresponding asymptotic expansion.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP203%2F11%2F0701" target="_blank" >GAP203/11/0701: Guided Quantum Dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
—
UT code for WoS article
000314726700007
EID of the result in the Scopus database
—