All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weight-lattice discretization of Weyl-orbit functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00303494" target="_blank" >RIV/68407700:21340/16:00303494 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4961154" target="_blank" >http://dx.doi.org/10.1063/1.4961154</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4961154" target="_blank" >10.1063/1.4961154</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weight-lattice discretization of Weyl-orbit functions

  • Original language description

    Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results with symmetry between the arguments and labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular S matrix, important for Wess-Zumino-Novikov-Witten conformal field theory. Published by AIP Publishing.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000383917300062

  • EID of the result in the Scopus database

    2-s2.0-84983680543