Local time of Levy random walks: A path integral approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00318536" target="_blank" >RIV/68407700:21340/17:00318536 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1103/PhysRevE.95.052136" target="_blank" >http://dx.doi.org/10.1103/PhysRevE.95.052136</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.95.052136" target="_blank" >10.1103/PhysRevE.95.052136</a>
Alternative languages
Result language
angličtina
Original language name
Local time of Levy random walks: A path integral approach
Original language description
The local time of a stochastic process quantifies the amount of time that sample trajectories x(tau) spend in the vicinity of an arbitrary point x. For a generic Hamiltonian, we employ the phase-space path-integral representation of random walk transition probabilities in order to quantify the properties of the local time. For time-independent systems, the resolvent of the Hamiltonian operator proves to be a central tool for this purpose. In particular, we focus on the local times of Levy random walks (Levy flights), which correspond to fractional diffusion equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PHYSICAL REVIEW E
ISSN
2470-0045
e-ISSN
2470-0053
Volume of the periodical
95
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
—
UT code for WoS article
000402019400001
EID of the result in the Scopus database
—