All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bijections in de Bruijn Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00335007" target="_blank" >RIV/68407700:21340/19:00335007 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.combinatorialmath.ca/ArsCombinatoria/Vol143.html" target="_blank" >http://www.combinatorialmath.ca/ArsCombinatoria/Vol143.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bijections in de Bruijn Graphs

  • Original language description

    A T-net of order $m$ is a graph with $m$ nodes and $2m$ directed edges, where every node has indegree and outdegree equal to $2$. (A well known example of T-nets are de Bruijn graphs.) Given a T-net $N$ of order $m$, there is the so called "doubling" process that creates a T-net $N^*$ from $N$ with $2m$ nodes and $4m$ edges. Let $vert Xvert$ denote the number of Eulerian cycles in a graph $X$. It is known that $vert N^*vert=2^{m-1}vert Nvert$. In this paper we present a new proof of this identity. Moreover we prove that $vert Nvertleq 2^{m-1}$. Let $Theta(X)$ denote the set of all Eulerian cycles in a graph $X$ and $S(n)$ the set of all binary sequences of length $n$. Exploiting the new proof we construct a bijection $Theta(N)times S(m-1)rightarrow Theta(N^*)$, which allows us to solve one of Stanley's open questions: we find a bijection between de Bruijn sequences of order $n$ and $S(2^{n-1})$.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Ars Combinatoria

  • ISSN

    0381-7032

  • e-ISSN

  • Volume of the periodical

    2019

  • Issue of the periodical within the volume

    143

  • Country of publishing house

    CA - CANADA

  • Number of pages

    12

  • Pages from-to

    215-226

  • UT code for WoS article

    000476581000018

  • EID of the result in the Scopus database