Sharp bounds for decomposing graphs into edges and triangles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00347568" target="_blank" >RIV/68407700:21340/21:00347568 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/10467/99562" target="_blank" >http://hdl.handle.net/10467/99562</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0963548320000358" target="_blank" >10.1017/S0963548320000358</a>
Alternative languages
Result language
angličtina
Original language name
Sharp bounds for decomposing graphs into edges and triangles
Original language description
In 1966, Erdos, Goodman and Posa proved that the edges of an n-vertex graph can be decomposed into at most n^2/4 cliques. Moreover, such a decomposition may consist of edges and triangles only. In 1980s, Gyori and Kostochka and independently Chung strengthened the first result in order to answer a question of Katona and Tarjan by proving that the minimum sum of the clique-orders in such decompositions is at most n^2/2. In 1987, these results led Gyori and Tuza to conjecture that the edge-set of an n-vertex graph can be decomposed into m edges and t triangles with 2m+3t <= n^2/2 + O(1). Recently, Kral, Lidicky, Martins and Pehova proved the conjecture asymptotically, i.e., found an edge-decomposition of any n-vertex graph into m edges and t triangles with 2m+3t<=n^2/2 + o(n^2). In this work, we fully resolve the conjecture of Gyori and Tuza. Specifically, we prove the only large enough n-vertex graphs that cannot be decomposed into m edges and t triangles with 2m+3t <= n^2/2 are n-vertex cliques with n congruent to 4 (mod 6).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorics, Probability and Computing
ISSN
0963-5483
e-ISSN
1469-2163
Volume of the periodical
30
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
271-287
UT code for WoS article
000625213500007
EID of the result in the Scopus database
2-s2.0-85095310345