The Landau Hamiltonian with δ-potentials supported on curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00339702" target="_blank" >RIV/68407700:21340/20:00339702 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1142/S0129055X20500105" target="_blank" >https://doi.org/10.1142/S0129055X20500105</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129055X20500105" target="_blank" >10.1142/S0129055X20500105</a>
Alternative languages
Result language
angličtina
Original language name
The Landau Hamiltonian with δ-potentials supported on curves
Original language description
The spectral properties of the singularly perturbed self-adjoint Landau Hamiltonian Aα = (idel + A)2 + αδ ς in L2(ℝ2) with a δ-potential supported on a finite C1,1-smooth curve ς are studied. Here A = 1 2B(-x2,x1)τ is the vector potential, B > 0 is the strength of the homogeneous magnetic field, and α L) is a position-dependent real coefficient modeling the strength of the singular interaction on the curve. After a general discussion of the qualitative spectral properties of & and its resolvent, one of the main objectives in the present paper is a local spectral analysis of & near the Landau levels B(2q + 1), q ℕ0. Under various conditions on &, it is shown that the perturbation smears the Landau levels into eigenvalue clusters, and the accumulation rate of the eigenvalues within these clusters is determined in terms of the capacity of the support of . Furthermore, the use of Landau Hamiltonians with δ-perturbations as model operators for more realistic quantum systems is justified by showing that A can be approximated in the norm resolvent sense by a family of Landau Hamiltonians with suitably scaled regular potentials. 2020 World Scientific Publishing Company.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Reviews in Mathematical Physics
ISSN
0129-055X
e-ISSN
1793-6659
Volume of the periodical
32
Issue of the periodical within the volume
4
Country of publishing house
SG - SINGAPORE
Number of pages
47
Pages from-to
—
UT code for WoS article
000531487500002
EID of the result in the Scopus database
2-s2.0-85073877359