Quantum particle on dual root lattice in Weyl alcove
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353581" target="_blank" >RIV/68407700:21340/21:00353581 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1088/1751-8121/abdc80" target="_blank" >https://doi.org/10.1088/1751-8121/abdc80</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/abdc80" target="_blank" >10.1088/1751-8121/abdc80</a>
Alternative languages
Result language
angličtina
Original language name
Quantum particle on dual root lattice in Weyl alcove
Original language description
Classes of discrete quantum models that describe a free non-relativistic quantum particle propagating on rescaled and shifted dual root lattices inside closures of Weyl alcoves are constructed. Boundary conditions of the discrete quantum billiard systems on the borders of the Weyl alcoves are controlled by specific combinations of Dirichlet and Neumann walls that result from sign homomorphisms and admissible shifts inherent in generalized dual root lattice Fourier–Weyl transforms. The amplitudes of the particle's jumps to neighbouring positions are controlled by a complex-valued dual root lattice hopping function with finite support. The solutions of the time-independent Schrödinger equation together with the eigenenergies of the quantum systems are explicitly determined. The matrix Hamiltonians and eigenenergies of the discrete models are exemplified for the rank two cases A2 and C2.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GA19-19535S" target="_blank" >GA19-19535S: Fourier methods of special functions of affine Weyl groups</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Volume of the periodical
54
Issue of the periodical within the volume
9
Country of publishing house
GB - UNITED KINGDOM
Number of pages
31
Pages from-to
—
UT code for WoS article
000616508100001
EID of the result in the Scopus database
2-s2.0-85101106390