Quantum Particle on Dual Weight Lattice in Weyl Alcove
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353582" target="_blank" >RIV/68407700:21340/21:00353582 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/sym13081338" target="_blank" >https://doi.org/10.3390/sym13081338</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym13081338" target="_blank" >10.3390/sym13081338</a>
Alternative languages
Result language
angličtina
Original language name
Quantum Particle on Dual Weight Lattice in Weyl Alcove
Original language description
Families of discrete quantum models that describe a free non-relativistic quantum particle propagating on rescaled and shifted dual weight lattices inside closures of Weyl alcoves are developed. The boundary conditions of the presented discrete quantum billiards are enforced by precisely positioned Dirichlet and Neumann walls on the borders of the Weyl alcoves. The amplitudes of the particle's propagation to neighbouring positions are determined by a complex-valued dual-weight hopping function of finite support. The discrete dual-weight Hamiltonians are obtained as the sum of specifically constructed dual-weight hopping operators. By utilising the generalised dual-weight Fourier-Weyl transforms, the solutions of the time-independent Schrodinger equation together with the eigenenergies of the quantum systems are exactly resolved. The matrix Hamiltonians, stationary states and eigenenergies of the discrete models are exemplified for the rank two cases C(2) and G(2).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry
ISSN
2073-8994
e-ISSN
2073-8994
Volume of the periodical
13
Issue of the periodical within the volume
8
Country of publishing house
CH - SWITZERLAND
Number of pages
26
Pages from-to
—
UT code for WoS article
000690242100001
EID of the result in the Scopus database
2-s2.0-85111677416