Quantum Particle on Dual Weight Lattice in Even Weyl Alcove
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00368506" target="_blank" >RIV/68407700:21340/23:00368506 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10773-023-05296-x" target="_blank" >https://doi.org/10.1007/s10773-023-05296-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10773-023-05296-x" target="_blank" >10.1007/s10773-023-05296-x</a>
Alternative languages
Result language
angličtina
Original language name
Quantum Particle on Dual Weight Lattice in Even Weyl Alcove
Original language description
Even subgroups of affine Weyl groups corresponding to irreducible crystallographic root systems characterize families of single-particle quantum systems. Induced by primary and secondary sign homomorphisms of the Weyl groups, free propagations of the quantum particle on the refined dual weight lattices inside the rescaled even Weyl alcoves are determined by Hamiltonians of tight-binding types. Described by even hopping functions, amplitudes of the particle's jumps to the lattice neighbours are together with diverse boundary conditions incorporated through even hopping operators into the resulting even dual-weight Hamiltonians. Expressing the eigenenergies via weighted sums of the even Weyl orbit functions, the associated time-independent Schrodinger equations are exactly solved by applying the discrete even Fourier-Weyl transforms. Matrices of the even Hamiltonians together with specifications of the complementary boundary conditions are detailed for the C-2 and G(2) even dual-weight models.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GA19-19535S" target="_blank" >GA19-19535S: Fourier methods of special functions of affine Weyl groups</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
1572-9575
Volume of the periodical
62
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
1-31
UT code for WoS article
000949355000001
EID of the result in the Scopus database
2-s2.0-85150719307