The asymptotic behaviour of the heat equation in a sheared unbounded strip
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353904" target="_blank" >RIV/68407700:21340/21:00353904 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jde.2021.06.026" target="_blank" >https://doi.org/10.1016/j.jde.2021.06.026</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2021.06.026" target="_blank" >10.1016/j.jde.2021.06.026</a>
Alternative languages
Result language
angličtina
Original language name
The asymptotic behaviour of the heat equation in a sheared unbounded strip
Original language description
We show that the geometric deformation of shearing yields an improved decay rate for the heat semigroup associated with the Dirichlet Laplacian in an unbounded strip. The proof is based on the Hardy inequality due to the shearing established in [Briet, Abdou-Soimadou, Krejčiřı'k; Z. Angew. Math. Phys. (2019) 70:48] and the method of self-similar variables and weighted Sobolev spaces for the heat equation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
297
Issue of the periodical within the volume
October
Country of publishing house
US - UNITED STATES
Number of pages
26
Pages from-to
575-600
UT code for WoS article
000674635500019
EID of the result in the Scopus database
—