Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) Group for Orbital Angular Momentum
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00382643" target="_blank" >RIV/68407700:21340/21:00382643 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-85165-1_7" target="_blank" >http://dx.doi.org/10.1007/978-3-030-85165-1_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-85165-1_7" target="_blank" >10.1007/978-3-030-85165-1_7</a>
Alternative languages
Result language
angličtina
Original language name
Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) Group for Orbital Angular Momentum
Original language description
We have developed symbolic-numeric algorithms implemented in the Wolfram Mathematica to compute the orthonormal canonical Gel’fand–Tseitlin (G-T), non-canonical Bargmann-Moshinsky (B-M) and Elliott (E) bases of irreducible representations SU(3) ⊃ SO(3) ⊃ SO(2) group for a given orbital of angular momentum. The algorithms resolve the missing label problem by solving eigenvalue problem for the “labeling” B-M operator X(3 ). The effective numeric algorithm for construction of the G-T basis provides a unique capability to perform large scale calculations even with 8 byte real numbers. The algorithms for the construction of B-M and E bases implemented very fast modified Gramm–Schmidt orthonormalization procedure. In B-M basis, a very effective formula for calculation of the matrix X(3 ) is derived by graphical method. The implemented algorithm for construction of the B-M basis makes it possible to perform large scale exact as well as arbitrary precision calculations. The algorithm for the construction of the E basis resolves the missing label problem by calculation of the matrix X(3 ) in an orthogonal basis from this matrix previously built in non-orthogonal basis. The implementation of this algorithm provides large scale calculations with arbitrary precision. 2021, Springer Nature Switzerland AG.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computer Algebra in Scientific Computing
ISBN
978-3-030-85164-4
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
21
Pages from-to
100-120
Publisher name
Springer, Cham
Place of publication
—
Event location
Sochi
Event date
Sep 13, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—