All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) Group for Orbital Angular Momentum

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00382643" target="_blank" >RIV/68407700:21340/21:00382643 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-85165-1_7" target="_blank" >http://dx.doi.org/10.1007/978-3-030-85165-1_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-85165-1_7" target="_blank" >10.1007/978-3-030-85165-1_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) Group for Orbital Angular Momentum

  • Original language description

    We have developed symbolic-numeric algorithms implemented in the Wolfram Mathematica to compute the orthonormal canonical Gel’fand–Tseitlin (G-T), non-canonical Bargmann-Moshinsky (B-M) and Elliott (E) bases of irreducible representations SU(3) ⊃ SO(3) ⊃ SO(2) group for a given orbital of angular momentum. The algorithms resolve the missing label problem by solving eigenvalue problem for the “labeling” B-M operator X(3 ). The effective numeric algorithm for construction of the G-T basis provides a unique capability to perform large scale calculations even with 8 byte real numbers. The algorithms for the construction of B-M and E bases implemented very fast modified Gramm–Schmidt orthonormalization procedure. In B-M basis, a very effective formula for calculation of the matrix X(3 ) is derived by graphical method. The implemented algorithm for construction of the B-M basis makes it possible to perform large scale exact as well as arbitrary precision calculations. The algorithm for the construction of the E basis resolves the missing label problem by calculation of the matrix X(3 ) in an orthogonal basis from this matrix previously built in non-orthogonal basis. The implementation of this algorithm provides large scale calculations with arbitrary precision. 2021, Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Algebra in Scientific Computing

  • ISBN

    978-3-030-85164-4

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    21

  • Pages from-to

    100-120

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Sochi

  • Event date

    Sep 13, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article