All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Counterexamples to a Conjecture of Harris on Hall Ratio

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00361761" target="_blank" >RIV/68407700:21340/22:00361761 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/10467/105496" target="_blank" >http://hdl.handle.net/10467/105496</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/18M1229420" target="_blank" >10.1137/18M1229420</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Counterexamples to a Conjecture of Harris on Hall Ratio

  • Original language description

    In this work, we refute a conjecture of Harris by constructing various graphs whose fractional chromatic number grows much faster than their Hall ratio. The Hall ratio of a graph G is the maximum value of the ratio between the number of vertices and the independence number taken over all non-null subgraphs of G. For any graph, the Hall ratio is a lower-bound on its fractional chromatic number.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

    1095-7146

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    1678-1686

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85135244466