Counterexamples to a Conjecture of Harris on Hall Ratio
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00361761" target="_blank" >RIV/68407700:21340/22:00361761 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/10467/105496" target="_blank" >http://hdl.handle.net/10467/105496</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/18M1229420" target="_blank" >10.1137/18M1229420</a>
Alternative languages
Result language
angličtina
Original language name
Counterexamples to a Conjecture of Harris on Hall Ratio
Original language description
In this work, we refute a conjecture of Harris by constructing various graphs whose fractional chromatic number grows much faster than their Hall ratio. The Hall ratio of a graph G is the maximum value of the ratio between the number of vertices and the independence number taken over all non-null subgraphs of G. For any graph, the Hall ratio is a lower-bound on its fractional chromatic number.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
1095-7146
Volume of the periodical
36
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
1678-1686
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85135244466