On electron propagation in triangular graphene quantum dots
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00363826" target="_blank" >RIV/68407700:21340/22:00363826 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1088/1751-8121/ac5218" target="_blank" >https://doi.org/10.1088/1751-8121/ac5218</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/ac5218" target="_blank" >10.1088/1751-8121/ac5218</a>
Alternative languages
Result language
angličtina
Original language name
On electron propagation in triangular graphene quantum dots
Original language description
Tight-binding models of electron propagation in single-layer triangular graphene quantum dots with armchair and zigzag edges are developed. The electron hoppings to the nearest and next-to-nearest neighbours on the honeycomb lattice as well as interactions with the confining Dirichlet and Neumann walls are incorporated into the resulting tight-binding Hamiltonians. Associated to the irreducible crystallographic root system A (2), the armchair and zigzag honeycomb Weyl orbit functions together with the related discrete Fourier-Weyl transforms provide explicit exact forms of the electron wave functions and energy spectra. The electronic probability densities corresponding to the armchair and zigzag dots are evaluated and their contrasting behaviour exemplified.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
<a href="/en/project/GA19-19535S" target="_blank" >GA19-19535S: Fourier methods of special functions of affine Weyl groups</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Volume of the periodical
55
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
40
Pages from-to
1-40
UT code for WoS article
000766862600001
EID of the result in the Scopus database
2-s2.0-85126427206