Rewriting rules for arithmetics in alternate base systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00369882" target="_blank" >RIV/68407700:21340/23:00369882 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-33264-7_16" target="_blank" >http://dx.doi.org/10.1007/978-3-031-33264-7_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-33264-7_16" target="_blank" >10.1007/978-3-031-33264-7_16</a>
Alternative languages
Result language
angličtina
Original language name
Rewriting rules for arithmetics in alternate base systems
Original language description
For alternate Cantor real base numeration systems we generalize the result of Frougny and Solomyak on arithmetics on the set of numbers with finite expansion. We provide a class of alternate bases which satisfy the so-called finiteness property. The proof uses rewriting rules on the language of expansions in the corresponding numeration system. The proof is constructive and provides a method for performing addition of expansions in Cantor real bases.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Developments in Language Theory
ISBN
978-3-031-33264-7
ISSN
1611-3349
e-ISSN
—
Number of pages
13
Pages from-to
195-207
Publisher name
Springer, Cham
Place of publication
—
Event location
Umeå
Event date
Jun 12, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—