All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hamiltonian integrable systems in a magnetic field and symplectic-Haantjes geometry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00378798" target="_blank" >RIV/68407700:21340/24:00378798 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1098/rspa.2024.0076" target="_blank" >https://doi.org/10.1098/rspa.2024.0076</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1098/rspa.2024.0076" target="_blank" >10.1098/rspa.2024.0076</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hamiltonian integrable systems in a magnetic field and symplectic-Haantjes geometry

  • Original language description

    We investigate the geometry of classical Hamiltonian systems immersed in a magnetic field in three-dimensional (3D) Riemannian configuration spaces. We prove that these systems admit non-trivial symplectic-Haantjes manifolds, which are symplectic manifolds endowed with an algebra of Haantjes (1,1)-tensors. These geometric structures allow us to determine separation variables for known systems algorithmically. In addition, the underlying Stäckel geometry is used to construct new families of integrable Hamiltonian models immersed in a magnetic field.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences

  • ISSN

    1364-5021

  • e-ISSN

    1471-2946

  • Volume of the periodical

    480

  • Issue of the periodical within the volume

    2301

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    24

  • Pages from-to

    1-24

  • UT code for WoS article

    001349225300002

  • EID of the result in the Scopus database

    2-s2.0-85209698783