Hamiltonian integrable systems in a magnetic field and symplectic-Haantjes geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00378798" target="_blank" >RIV/68407700:21340/24:00378798 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1098/rspa.2024.0076" target="_blank" >https://doi.org/10.1098/rspa.2024.0076</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1098/rspa.2024.0076" target="_blank" >10.1098/rspa.2024.0076</a>
Alternative languages
Result language
angličtina
Original language name
Hamiltonian integrable systems in a magnetic field and symplectic-Haantjes geometry
Original language description
We investigate the geometry of classical Hamiltonian systems immersed in a magnetic field in three-dimensional (3D) Riemannian configuration spaces. We prove that these systems admit non-trivial symplectic-Haantjes manifolds, which are symplectic manifolds endowed with an algebra of Haantjes (1,1)-tensors. These geometric structures allow us to determine separation variables for known systems algorithmically. In addition, the underlying Stäckel geometry is used to construct new families of integrable Hamiltonian models immersed in a magnetic field.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
ISSN
1364-5021
e-ISSN
1471-2946
Volume of the periodical
480
Issue of the periodical within the volume
2301
Country of publishing house
GB - UNITED KINGDOM
Number of pages
24
Pages from-to
1-24
UT code for WoS article
001349225300002
EID of the result in the Scopus database
2-s2.0-85209698783