All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dumont-Thomas Complement Numeration Systems for Z

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00379531" target="_blank" >RIV/68407700:21340/24:00379531 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.5281/zenodo.14340125" target="_blank" >https://doi.org/10.5281/zenodo.14340125</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5281/zenodo.14340125" target="_blank" >10.5281/zenodo.14340125</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dumont-Thomas Complement Numeration Systems for Z

  • Original language description

    We extend the well-known Dumont-Thomas numeration systems to Z using an approach inspired by the two’s complement numeration system. Integers in Z are canonically represented by a finite word (starting with 0 when nonnegative and with 1 when negative). The systems are based on two-sided periodic points of substitutions as opposed to the right-sided fixed points. For every periodic point of a substitution, we construct an automaton which returns the letter at position n element Z of the periodic point when fed with the representation of n in the corresponding numeration system. The numeration system naturally extends to Zd. We give an equivalent characterization of the numeration system in terms of a total order on a regular language. Lastly, using particular periodic points, we recover the well-known two’s complement numeration system and the Fibonacci analogue of the two’s complement numeration system.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Integers: Electronic Journal of Combinatorial Number Theory

  • ISSN

    1553-1732

  • e-ISSN

    1553-1732

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    A112

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    27

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-86000505543