On the Anti-Ramsey Threshold for Non-Balanced Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00382252" target="_blank" >RIV/68407700:21340/24:00382252 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.37236/11449" target="_blank" >https://doi.org/10.37236/11449</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37236/11449" target="_blank" >10.37236/11449</a>
Alternative languages
Result language
angličtina
Original language name
On the Anti-Ramsey Threshold for Non-Balanced Graphs
Original language description
For graphs G, H, we write G(->)(rb) H if for every proper edge-coloring of G there is a rainbow copy of H, i.e., a copy where no color appears more than once. Kohayakawa, Konstadinidis and the last author proved that the threshold for G(n, p) (rb)(->) H is at most n(-1)/m(2)(H). Previous results have matched the lower bound for this anti-Ramsey threshold for cycles and complete graphs with at least 5 vertices. Kohayakawa, Konstadinidis and the last author also presented an infinite family of graphs H for which the anti-Ramsey threshold is asymptotically smaller than n(-1)/m(2). In this paper, we devise a framework that provides a richer family of such graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Combinatorics (E-JC),
ISSN
1077-8926
e-ISSN
1077-8926
Volume of the periodical
31
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
—
UT code for WoS article
001189377100001
EID of the result in the Scopus database
2-s2.0-85188328135