All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The potential of constrained SAR focusing for hyperthermia treatment planning: analysis for the head & neck region

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F19%3A00326454" target="_blank" >RIV/68407700:21460/19:00326454 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1088/1361-6560/aaf0c4" target="_blank" >https://doi.org/10.1088/1361-6560/aaf0c4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6560/aaf0c4" target="_blank" >10.1088/1361-6560/aaf0c4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The potential of constrained SAR focusing for hyperthermia treatment planning: analysis for the head & neck region

  • Original language description

    Clinical trials have shown that hyperthermia is a potent adjuvant to conventional cancer treatments, but the temperatures currently achieved in the clinic are still suboptimal. Hyperthermia treatment planning simulations have potential to improve the heating profile of phased-array applicators. An important open challenge is the development of an effective optimization procedure that enables uniform heating of the target region while keeping temperature below a threshold in healthy tissues. In this work, we analyzed the effectiveness and efficiency of a recently proposed optimization approach, i.e. focusing via constrained power optimization (FOCO), using 3D simulations of twelve clinical patient specific models. FOCO performance was compared against a clinically used particle swarm based optimization approach. Evaluation metrics were target coverage at the 25% iso-SAR level, target hotspot quotient, median target temperature (T50) and computational requirements. Our results show that, on average, constrained power focusing performs slightly better than the clinical benchmark (T50 °C), but outperforms this clinical benchmark for large target volumes (40 cm, T50 °C). In addition, the results are achieved in a shorter time (%) and are repeatable because the approach is formulated as a convex optimization problem.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physics in Medicine and Biology

  • ISSN

    0031-9155

  • e-ISSN

    1361-6560

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000454239200006

  • EID of the result in the Scopus database

    2-s2.0-85058918246