All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi bin energy-sensitive micro-CT using large area photon-counting detectors Timepix

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21670%2F22%3A00355012" target="_blank" >RIV/68407700:21670/22:00355012 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1088/1748-0221/17/01/C01028" target="_blank" >https://doi.org/10.1088/1748-0221/17/01/C01028</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1748-0221/17/01/C01028" target="_blank" >10.1088/1748-0221/17/01/C01028</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi bin energy-sensitive micro-CT using large area photon-counting detectors Timepix

  • Original language description

    X-ray micro-CT has become a popular and widely used tool for the purposes of scientific research. Although the current state-of-the-art micro-CT is on a high technology level, it still has some known limitations. One of the relevant issues is an inability to clearly identify and quantify specific materials. The mentioned drawback can be solved by the energy-sensitive CT approach. Dual-energy CT, which is already frequently used in human medicine, offers the identification of two different materials; for example, it differentiates an intravenous contrast agent from bone or it can indicate the composition of urinary stones. Resolving a larger number of material components within a single object is beyond the capabilities of dual-energy CT. Such an approach requires a higher number of measurements using different photon energies. A possible solution for multi bin, or so-called spectral CT, is the application of photon-counting detectors. Photon counting technology offers an integrated circuitry capable of resolving the energy of incoming photons in each pixel. Therefore, it is possible to collect data in user-defined energy windows. This contribution evaluates the applicability of the large-area photon-counting detector Timepix for multi bin energy-sensitive micro-CT. It presents an experimental phantom study focused on the simultaneous K-edge-based identification and quantification of multiple contrast agents within a single object. The paper describes the collection of multiple energy bins using the Timepix detector operated in the photon counting mode, explains the data processing, and demonstrates the results obtained from an in-house implemented basis material decomposition algorithm.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000766" target="_blank" >EF16_019/0000766: Engineering applications of microworld physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Instrumentation

  • ISSN

    1748-0221

  • e-ISSN

    1748-0221

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    -

  • Country of publishing house

    IT - ITALY

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000757148100005

  • EID of the result in the Scopus database

    2-s2.0-85125545894