Homeostatic artificial neural network for models of human operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F16%3A00304567" target="_blank" >RIV/68407700:21730/16:00304567 - isvavai.cz</a>
Result on the web
<a href="http://www.impb.ru/icmbb/docs/ICMBB16.pdf" target="_blank" >http://www.impb.ru/icmbb/docs/ICMBB16.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Homeostatic artificial neural network for models of human operator
Original language description
Novel method for models of human brain processes with the use artificial neural networks is presented. The proposed learning algorithm of the neural network is able to find the optimal setting in a way that is similar to biological neuron. On the other hand, the algorithm is still enough simple to be calculated on standard hardware. The proposed network was tested on both artificial and real data. The main benefit is that the learning can continue even after the environment (the input and output matrix) changed. The results suggest that this type of learning can be useful also in other tasks of artificial learning and recognition.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
МАТЕМАТИЧЕСКАЯ БИОЛОГИЯ И БИОИНФОРМАТИКА
ISBN
978-5-317-05377-2
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
151-154
Publisher name
Institute of Mathematical Problems of Biology, RAS
Place of publication
Puschino
Event location
Puschino
Event date
Oct 16, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—