All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

End-to-end weakly-supervised semantic alignment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F18%3A00329434" target="_blank" >RIV/68407700:21730/18:00329434 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/8578821" target="_blank" >https://ieeexplore.ieee.org/document/8578821</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR.2018.00723" target="_blank" >10.1109/CVPR.2018.00723</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    End-to-end weakly-supervised semantic alignment

  • Original language description

    We tackle the task of semantic alignment where the goal is to compute dense semantic correspondence aligning two images depicting objects of the same category. This is a challenging task due to large intra-class variation, changes in viewpoint and background clutter. We present the following three principal contributions. First, we develop a convolutional neural network architecture for semantic alignment that is trainable in an end-to-end manner from weak image-level supervision in the form of matching image pairs. The outcome is that parameters are learnt from rich appearance variation present in different but semantically related images without the need for tedious manual annotation of correspondences at training time. Second, the main component of this architecture is a differentiable soft inlier scoring module, inspired by the RANSAC inlier scoring procedure, that computes the quality of the alignment based on only geometrically consistent correspondences thereby reducing the effect of background clutter. Third, we demonstrate that the proposed approach achieves state-of-the-art performance on multiple standard benchmarks for semantic alignment.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2018: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-5386-6420-9

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    9

  • Pages from-to

    6917-6925

  • Publisher name

    IEEE

  • Place of publication

    Piscataway, NJ

  • Event location

    Salt Lake City

  • Event date

    Jun 19, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000457843607008