All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chemical composition assessment of structural parts (seeds, peel, pulp) of physalis alkekengi l. fruits

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F22%3A63555579" target="_blank" >RIV/70883521:28110/22:63555579 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1420-3049/27/18/5787" target="_blank" >https://www.mdpi.com/1420-3049/27/18/5787</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/molecules27185787" target="_blank" >10.3390/molecules27185787</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chemical composition assessment of structural parts (seeds, peel, pulp) of physalis alkekengi l. fruits

  • Original language description

    In recent years there has been an extensive search for nature-based products with functional potential. All structural parts of Physalis alkekengi (bladder cherry), including fruits, pulp, and less-explored parts, such as seeds and peel, can be considered sources of functional macro- and micronutrients, bioactive compounds, such as vitamins, minerals, polyphenols, and polyunsaturated fatty acids, and dietetic fiber. The chemical composition of all fruit structural parts (seeds, peel, and pulp) of two phenotypes of P. alkekengi were studied. The seeds were found to be a rich source of oil, yielding 14–17%, with abundant amounts of unsaturated fatty acids (over 88%) and tocopherols, or vitamin E (up to 5378 mg/kg dw; dry weight). The predominant fatty acid in the seed oils was linoleic acid, followed by oleic acid. The seeds contained most of the fruit’s protein (16–19% dw) and fiber (6–8% dw). The peel oil differed significantly from the seed oil in fatty acid and tocopherol composition. Seed cakes, the waste after oil extraction, contained arginine and aspartic acid as the main amino acids; valine, phenylalanine, threonine, and isoleucine were present in slightly higher amounts than the other essential amino acids. They were also rich in key minerals, such as K, Mg, Fe, and Zn. From the peel and pulp fractions were extracted fruit concretes, aromatic products with specific fragrance profiles, of which volatile compositions (GC-MS) were identified. The major volatiles in peel and pulp concretes were β-linalool, α-pinene, and γ-terpinene. The results from the investigation substantiated the potential of all the studied fruit structures as new sources of bioactive compounds that could be used as prospective sources in human and animal nutrition, while the aroma-active compounds in the concretes supported the plant’s potential in perfumery and cosmetics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21101 - Food and beverages

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Molecules

  • ISSN

    1420-3049

  • e-ISSN

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    18

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000859546000001

  • EID of the result in the Scopus database

    2-s2.0-85138727108