Self-tuning Predictive Control of Nonlinear Servo-motor
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F10%3A63508985" target="_blank" >RIV/70883521:28140/10:63508985 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Self-tuning Predictive Control of Nonlinear Servo-motor
Original language description
The paper is focused on a design of a self-tuning predictive model control (STMPC) algorithm and its application to a control of a laboratory servo ? motor. The model predictive control algorithm considers constraints of a manipulated variable. An ARX model is used in the identification part of the self-tuning controller and its parameters are recursively estimated using the recursive least squares method with the directional forgetting. The control algorithm is based on the Generalised Predictive Control (GPC) method and the optimization was realized by minimization of a quadratic and absolute values objective functions. A recursive control algorithm was designed for computation of individual predictions by incorporating a receding horizon principle.Proposed predictive controllers were verified by a real-time control of highly nonlinear laboratory model ? Amira DR300.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0567" target="_blank" >1M0567: Centre for Applied Cybernetics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Electrical Engineering
ISSN
1335-3632
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
6
Country of publishing house
SK - SLOVAKIA
Number of pages
8
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—