All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Constructing a cryptocurrency-price prediction model using deep learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63561218" target="_blank" >RIV/70883521:28140/22:63561218 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/abstract/document/10007138/authors#authors" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10007138/authors#authors</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICEET56468.2022.10007138" target="_blank" >10.1109/ICEET56468.2022.10007138</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Constructing a cryptocurrency-price prediction model using deep learning

  • Original language description

    The purpose of this study is to discover the optimal Deep Learning model for Bitcoin prediction among the Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). Our empirical results indicate that LSTM is the optimal model for predicting Bitcoin price and trend with the prediction accuracy of 88.9%. Our study serves as a stepping stone for novice cryptocurrency investors and future studies of more advanced and sophisticated algorithms. Finally, given that the ideal model for predicting the price of cryptocurrencies is still a topic of controversy, the findings of this study will serve as a valuable empirical resource for future studies.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    8th International Conference on Engineering and Emerging Technologies, ICEET 2022

  • ISBN

    978-1-66549-106-8

  • ISSN

    2409-2983

  • e-ISSN

    2831-3682

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    Institute of Electrical and Electronics Engineers Inc.

  • Place of publication

    Piscataway, New Jersey

  • Event location

    Kuala Lumpur

  • Event date

    Oct 27, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article