All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Does the novel fast-GC coupled with PTR-TOF-MS allow a significant advancement in detecting VOC emissions from plants?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F16%3A00453042" target="_blank" >RIV/86652079:_____/16:00453042 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.agrformet.2015.10.016" target="_blank" >http://dx.doi.org/10.1016/j.agrformet.2015.10.016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.agrformet.2015.10.016" target="_blank" >10.1016/j.agrformet.2015.10.016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Does the novel fast-GC coupled with PTR-TOF-MS allow a significant advancement in detecting VOC emissions from plants?

  • Original language description

    Most plants produce and emit a wide blend of biogenic volatile organic compounds (BVOCs). Among them, many isoprenoids exhibit a high atmospheric reactivity toward OH radicals and ozone. In the last few years, Proton Transfer Reaction–Mass Spectrometry (PTR–MS) has been widely used in both field and laboratory determination of BVOCs, complementing the traditional methods using gas chromatography–mass spectrometry (GC–MS) for their identification in air and emission sources. This technical note reports a number of experiments carried out with a PTR- (Time-of-Flight) TOF-MS equipped with a prototype fast-GC system, allowing a fast separation of those isobaric isoprenoid compounds that cannot be identified by a direct PTR-TOF-MS analysis. The potential of this fast-GC system to adequately complement the information provided by PTR-TOF-MS was investigated by using the BVOC emissions of Quercus ilex and Eucalyptus camaldulensis as reliable testing systems, due to the different blend of isoprenoid compounds emitted and the different dependence of their emission from environmental parameters. While the oak species is a strong monoterpene emitter, the eucalyptus used is one of the few plant species emitting both isoprene and monoterpenes. The performances provided by the type of fast-GC used in the new PTR-TOF-MS instrument were also compared with those afforded by conventional GC–MS methods. The results obtained in this investigation showed that this new instrument is indeed a quick and handy tool to determine the contribution of isoprene and eucalyptol to m/z 69.070 and monoterpenes and (Z)-3-hexenal to m/z 81.070, integrating well the on-line information provided by PTR-TOF-MS. However, some limitations emerged in the instrument as compared to traditional GC–MS, which can only be solved by implementing the injection and separation processes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    EH - Ecology - communities

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Agricultural and Forest Meteorology

  • ISSN

    0168-1923

  • e-ISSN

  • Volume of the periodical

    216

  • Issue of the periodical within the volume

    JAN

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

    232-240

  • UT code for WoS article

    000367491300021

  • EID of the result in the Scopus database

    2-s2.0-84947596239