Large deviations and phase transitions in spectral linear statistics of Gaussian random matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2FCZ______%3A_____%2F24%3AN0000098" target="_blank" >RIV/CZ______:_____/24:N0000098 - isvavai.cz</a>
Result on the web
<a href="https://iopscience.iop.org/article/10.1088/1751-8121/ad1e1a" target="_blank" >https://iopscience.iop.org/article/10.1088/1751-8121/ad1e1a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/ad1e1a" target="_blank" >10.1088/1751-8121/ad1e1a</a>
Alternative languages
Result language
angličtina
Original language name
Large deviations and phase transitions in spectral linear statistics of Gaussian random matrices
Original language description
We evaluate, in the large-N limit, the complete probability distribution P(A,m) of the values A of the sum & sum;(N)(i=1)|lambda(i)|(m), where lambda(i) (i=1,2,& mldr;,N) are the eigenvalues of a Gaussian random matrix, and m is a positive real number. Combining the Coulomb gas method with numerical simulations using a matrix variant of the Wang-Landau algorithm, we found that, in the limit of N ->infinity, the rate function of P(A,m) exhibits phase transitions of different characters. The phase diagram of the system on the (A,m) plane is surprisingly rich, as it includes three regions: (i) a region with a single-interval support of the optimal spectrum of eigenvalues, (ii) a region emerging for m<2 where the optimal spectrum splits into two separate intervals, and (iii) a region emerging for m>2 where the maximum or minimum eigenvalue ``evaporates" from the rest of eigenvalues and dominates the statistics of A. The phase transition between regions (i) and (iii) is of second order. Analytical arguments and numerical simulations strongly suggest that the phase transition between regions (i) and (ii) is of (in general) fractional order p=1+1/|m-1|, where 02 occur at the ground state of the Coulomb gas which corresponds to the Wigner's semicircular distribution.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Volume of the periodical
57
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
31
Pages from-to
065001 (1-31)
UT code for WoS article
001154489000001
EID of the result in the Scopus database
2-s2.0-85184029025