The inlet and outlet boundary problem with the preference of mass flow
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00010669%3A_____%2F16%3AN0000076" target="_blank" >RIV/00010669:_____/16:N0000076 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.eccomas2016.org/" target="_blank" >http://www.eccomas2016.org/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The inlet and outlet boundary problem with the preference of mass flow
Popis výsledku v původním jazyce
We work with the numerical solution of the turbulent compressible gas flow, and we focus on the numerical solution of these equations, and on the boundary conditions. In this work we focus on the inlet and outlet boundary condition with the preference of given mass flow. Usually, the boundary problem is being linearized, or roughly approximated. The inaccuracies implied by these simplifications may be small, but it has a huge impact on the solution in the whole studied area, especially for the non-stationary flow. The boundary condition with the preference of mass flow is sometimes being implemented with the use of some iterative process, guessing the correct values (for the pressure, density, velocity) in order to match the given mass flow through the boundary. In our approach we try to be as exact as possible, using our own original procedures. We follow the exact solution of the initial-value problem for the system of hyperbolic partial differential equations. This complicated problem is modified at the close vicinity of boundary, where the conservation laws are supplied with the additional boundary conditions. We complement the boundary problem suitably, and we show the analysis of the resulting uniquely-solvable modified Riemann problem. The resulting algorithm was coded and used within our own developed code for the solution of the compressible gas flow (the Euler, NS, and RANS equations). The examples show good behaviour of the analyzed boundary conditions.
Název v anglickém jazyce
The inlet and outlet boundary problem with the preference of mass flow
Popis výsledku anglicky
We work with the numerical solution of the turbulent compressible gas flow, and we focus on the numerical solution of these equations, and on the boundary conditions. In this work we focus on the inlet and outlet boundary condition with the preference of given mass flow. Usually, the boundary problem is being linearized, or roughly approximated. The inaccuracies implied by these simplifications may be small, but it has a huge impact on the solution in the whole studied area, especially for the non-stationary flow. The boundary condition with the preference of mass flow is sometimes being implemented with the use of some iterative process, guessing the correct values (for the pressure, density, velocity) in order to match the given mass flow through the boundary. In our approach we try to be as exact as possible, using our own original procedures. We follow the exact solution of the initial-value problem for the system of hyperbolic partial differential equations. This complicated problem is modified at the close vicinity of boundary, where the conservation laws are supplied with the additional boundary conditions. We complement the boundary problem suitably, and we show the analysis of the resulting uniquely-solvable modified Riemann problem. The resulting algorithm was coded and used within our own developed code for the solution of the compressible gas flow (the Euler, NS, and RANS equations). The examples show good behaviour of the analyzed boundary conditions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BK - Mechanika tekutin
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ECCOMAS Congress 2016
ISBN
978-618-82844-0-1
ISSN
—
e-ISSN
—
Počet stran výsledku
19
Strana od-do
6979-6998
Název nakladatele
National Technical University of Athens
Místo vydání
Greece
Místo konání akce
Crete, Greece
Datum konání akce
5. 6. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—