Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The inlet and outlet boundary problem with the preference of mass flow

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00010669%3A_____%2F16%3AN0000076" target="_blank" >RIV/00010669:_____/16:N0000076 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.eccomas2016.org/" target="_blank" >http://www.eccomas2016.org/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The inlet and outlet boundary problem with the preference of mass flow

  • Popis výsledku v původním jazyce

    We work with the numerical solution of the turbulent compressible gas flow, and we focus on the numerical solution of these equations, and on the boundary conditions. In this work we focus on the inlet and outlet boundary condition with the preference of given mass flow. Usually, the boundary problem is being linearized, or roughly approximated. The inaccuracies implied by these simplifications may be small, but it has a huge impact on the solution in the whole studied area, especially for the non-stationary flow. The boundary condition with the preference of mass flow is sometimes being implemented with the use of some iterative process, guessing the correct values (for the pressure, density, velocity) in order to match the given mass flow through the boundary. In our approach we try to be as exact as possible, using our own original procedures. We follow the exact solution of the initial-value problem for the system of hyperbolic partial differential equations. This complicated problem is modified at the close vicinity of boundary, where the conservation laws are supplied with the additional boundary conditions. We complement the boundary problem suitably, and we show the analysis of the resulting uniquely-solvable modified Riemann problem. The resulting algorithm was coded and used within our own developed code for the solution of the compressible gas flow (the Euler, NS, and RANS equations). The examples show good behaviour of the analyzed boundary conditions.

  • Název v anglickém jazyce

    The inlet and outlet boundary problem with the preference of mass flow

  • Popis výsledku anglicky

    We work with the numerical solution of the turbulent compressible gas flow, and we focus on the numerical solution of these equations, and on the boundary conditions. In this work we focus on the inlet and outlet boundary condition with the preference of given mass flow. Usually, the boundary problem is being linearized, or roughly approximated. The inaccuracies implied by these simplifications may be small, but it has a huge impact on the solution in the whole studied area, especially for the non-stationary flow. The boundary condition with the preference of mass flow is sometimes being implemented with the use of some iterative process, guessing the correct values (for the pressure, density, velocity) in order to match the given mass flow through the boundary. In our approach we try to be as exact as possible, using our own original procedures. We follow the exact solution of the initial-value problem for the system of hyperbolic partial differential equations. This complicated problem is modified at the close vicinity of boundary, where the conservation laws are supplied with the additional boundary conditions. We complement the boundary problem suitably, and we show the analysis of the resulting uniquely-solvable modified Riemann problem. The resulting algorithm was coded and used within our own developed code for the solution of the compressible gas flow (the Euler, NS, and RANS equations). The examples show good behaviour of the analyzed boundary conditions.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BK - Mechanika tekutin

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ECCOMAS Congress 2016

  • ISBN

    978-618-82844-0-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    19

  • Strana od-do

    6979-6998

  • Název nakladatele

    National Technical University of Athens

  • Místo vydání

    Greece

  • Místo konání akce

    Crete, Greece

  • Datum konání akce

    5. 6. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku