Finite volume - space-time discontinuous Galerkin method for the numerical simulation of compressible turbulent flow in time dependent domains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00010669%3A_____%2F17%3AN0000054" target="_blank" >RIV/00010669:_____/17:N0000054 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.epj-conferences.org/articles/epjconf/abs/2017/12/epjconf_efm2017_02014/epjconf_efm2017_02014.html" target="_blank" >http://www.epj-conferences.org/articles/epjconf/abs/2017/12/epjconf_efm2017_02014/epjconf_efm2017_02014.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/epjconf/201714302014" target="_blank" >10.1051/epjconf/201714302014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finite volume - space-time discontinuous Galerkin method for the numerical simulation of compressible turbulent flow in time dependent domains
Popis výsledku v původním jazyce
The article is concerned with the numerical simulation of the compressible turbulent flow in time dependent domains. The mathematical model of flow is represented by the system of non-stationary Reynolds-Averaged Navier-Stokes (RANS) equations. The motion of the domain occupied by the fluid is taken into account with the aid of the ALE (Arbitrary Lagrangian-Eulerian) formulation of the RANS equations. This RANS system is equipped with two-equation $k-omega$ turbulence model. These two systems of equations are solved separately. Discretization of the RANS system is carried out by the space-time discontinuous Galerkin method which is based on piecewise polynomial discontinuous approximation of the sought solution in space and in time. Discretization of the two-equation $k-omega$ turbulence model is carried out by the implicit finite volume method, which is based on piecewise constant approximation of the sought solution. We present some numerical experiments to demonstrate the applicability of the method using own-developed code.
Název v anglickém jazyce
Finite volume - space-time discontinuous Galerkin method for the numerical simulation of compressible turbulent flow in time dependent domains
Popis výsledku anglicky
The article is concerned with the numerical simulation of the compressible turbulent flow in time dependent domains. The mathematical model of flow is represented by the system of non-stationary Reynolds-Averaged Navier-Stokes (RANS) equations. The motion of the domain occupied by the fluid is taken into account with the aid of the ALE (Arbitrary Lagrangian-Eulerian) formulation of the RANS equations. This RANS system is equipped with two-equation $k-omega$ turbulence model. These two systems of equations are solved separately. Discretization of the RANS system is carried out by the space-time discontinuous Galerkin method which is based on piecewise polynomial discontinuous approximation of the sought solution in space and in time. Discretization of the two-equation $k-omega$ turbulence model is carried out by the implicit finite volume method, which is based on piecewise constant approximation of the sought solution. We present some numerical experiments to demonstrate the applicability of the method using own-developed code.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EPJ Web of Conferences
ISBN
—
ISSN
2101-6275
e-ISSN
2100-014X
Počet stran výsledku
12
Strana od-do
nestrankovano
Název nakladatele
EDP Sciences
Místo vydání
Neuveden
Místo konání akce
Mariánské lázně
Datum konání akce
15. 11. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000407743800016