Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Calculation of pseudo PM2.5 annual mean concentrations in Europe based on annual mean PM10 concentrations and other supplementary data. ETC/ACC Technical Paper 2010/9.

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020699%3A_____%2F11%3A%230000591" target="_blank" >RIV/00020699:_____/11:#0000591 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://acm.eionet.europa.eu/reports/ETCACC_TP_2010_9_pseudo_PM2.5_stations" target="_blank" >http://acm.eionet.europa.eu/reports/ETCACC_TP_2010_9_pseudo_PM2.5_stations</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Calculation of pseudo PM2.5 annual mean concentrations in Europe based on annual mean PM10 concentrations and other supplementary data. ETC/ACC Technical Paper 2010/9.

  • Popis výsledku v původním jazyce

    ETC/ACC has developed methods to spatially assess a number of air pollutants for all of Europe. Currently maps are produced for PM10 but not PM2.5 due to a lack of monitoring data for PM2.5, reported in AirBase. This makes spatial assessment of PM2.5 very uncertain and therefore PM2.5 maps are currently not operationally produced. To try to improve this situation two approaches for producing "pseudo" PM2.5 measurements are investigated for European wide mapping of PM2.5. These pseudo measurements are based on the measured PM10 concentrations but with addition of supplementary geographical, population and meteorological data. The two approaches are "Empirical Ensemble-based Virtual Sensing" (EEVS), which is based on Artificial Neural Networks, and multiple linear regression (MLR), a standard variational technique. They give similar results, with the EEVS approach showing slightly lower RMSE than MLR. For all other metrics assessed there was no significant difference. Neither approach wa

  • Název v anglickém jazyce

    Calculation of pseudo PM2.5 annual mean concentrations in Europe based on annual mean PM10 concentrations and other supplementary data. ETC/ACC Technical Paper 2010/9.

  • Popis výsledku anglicky

    ETC/ACC has developed methods to spatially assess a number of air pollutants for all of Europe. Currently maps are produced for PM10 but not PM2.5 due to a lack of monitoring data for PM2.5, reported in AirBase. This makes spatial assessment of PM2.5 very uncertain and therefore PM2.5 maps are currently not operationally produced. To try to improve this situation two approaches for producing "pseudo" PM2.5 measurements are investigated for European wide mapping of PM2.5. These pseudo measurements are based on the measured PM10 concentrations but with addition of supplementary geographical, population and meteorological data. The two approaches are "Empirical Ensemble-based Virtual Sensing" (EEVS), which is based on Artificial Neural Networks, and multiple linear regression (MLR), a standard variational technique. They give similar results, with the EEVS approach showing slightly lower RMSE than MLR. For all other metrics assessed there was no significant difference. Neither approach wa

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    DI - Znečištění a kontrola vzduchu

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů